
Ethereum
Blockchain Development

Week 18

Introduction

The intention of this lab is to look at functions and how variables are stored.
All the exercises are completed in Remix IDE.

Code Completion

Writing code in a new language can be a steep learning curve. The
approach here is to provide some code with underscores (_) that you
are required to complete. These underscores are there to help you.
By completing these exercises you will be improving your skills and
knowledge of Solidity.

Each exercise starts on a new page. The red numbers in the right-hand
margin are estimated minutes you should spend on each exercise. T

1

remix.ethereum.org

Ethereum: Week 18 1 NETWORK USING METAMASK AND GANACHE

1 Network using MetaMask and Ganache
15-20

As shown in the lecture the aim is to send ether between two accounts
and explore the limitations. The objectives in this exercise are to set up
Ganache and export the addresses to a Wallet. Complete the following:

1. Open VM and run Ganache

2. Open MetaMask Wallet

3. Add a Ganache account to the metamask Walllet. Repeat this for all
accounts. Label these accounts A1, A2,, A10.

4. Send 10 Ether between A1 and A2 and answer the following:

(a) What is the value of the block number?

(b) What is the value of the TX hash?

(c) What is the value of Gas used to complete the account?

(d) Confirm the amount sent in Wei and convert it to Ether.

(e) What is the value of the block hash?

(f) What is the timestamp for the block?

5. Repeat the above, with different amounts of ether and between dif-
ferent accounts. Study the results and answer the following:

(a) Are the block numbers consecutive? Would they be in a live
network?

(b) Is the amount of Gas the same, regardless of the amount trans-
ferred? Is this the same in a live network?

(c) Are the timestamps, TX hashes, block hashes the same?

2 ©2022-23 smerf.net

Ethereum: Week 18 2 PAYROLL

2 Payroll

The overall objective of this to create a payroll that is owned by an EOA,
delivered on a Contract Address, and pays employees in Ether when the
transaction is initiated by the owner.

There are some access issues that are considered and are resolved
using access modifiers.

Each subsection adds an important part of the contract and starts on a
new page.

2.1 Access Modifiers
15–20

This exercise is to be completed in the VM provided and is to be deployed
on a private network setup using Remix-ide desktop and Ganache. The
contract will be owned by the first account in ganache. The other accounts
will form the employees.

To start this exercise create a contract in the remix-ide editor as shown
in Fig. 2.1

Once completed continue to the next section.

Code Completion

1 //SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.0;
3
4 contract Payroll {
5 address[] public employees;
6 mapping (address => uint) accounts;
7 address public owner;
8 uint public balance;
9 bool init = false;

10
11 //EVENTS
12 event paid(address employee, uint amount, uint timestamp);
13
14 //ACCESS MODIFIERS
15 modifier ownerOnly(){
16 require(msg.sender == owner, "Insufficient access: owner only");
17 _;
18 }
19
20 //CONSTRUCTOR
21 constructor() payable {
22 owner = msg.sender;
23 balance = msg.sender.balance;
24 payable(address(this)).transfer(msg.value);
25 }

Figure 2.1: Solidity listing of payroll functions and state variables.

3 ©2022-23 smerf.net

Ethereum: Week 18 2 PAYROLL

2.2 require
10–15

Add the following functions displayed in Fig. 2.2 to the contract. Then
complete the next section.

Code Completion

1 //TRANSFER FUNDS, AMOUNT, TO AN ADDRESS
2 function payAmountTo(address payable _to, uint _amount) payable public ownerOnly {
3 require(_amount < balance, "Insufficient Funds");
4 _to.transfer(_amount);
5 }

Figure 2.2: Solidity listing of payroll functions.

4 ©2022-23 smerf.net

Ethereum: Week 18 2 PAYROLL

2.3 Payroll
15–20

The objective is to pay all the employees 10,000 Wei from the owner ac-
count using a for loop. This is much like a payroll system.

Your task is to complete the contract and transfer 10,000 Wei using the
function in fig.2.3.

Add two functions to get and return the owner’s balance and address.
Finally, compile and deploy this on a ganache private network.

Code Completion

1 //PAY EMPLOYEES
2 function payEmployees() payable public ownerOnly{
3 address payable _to;
4 uint _amount=10000; //set this to 10,000 Wei
5 for (uint8 i=0; i<employees.length; i++){
6 _to = payable(employees[i]);
7 payAmountTo(_to, _amount);
8 accounts[_to]+=_amount;
9 balance-=_amount;

10 emit paid(employees[i], _amount, block.timestamp);
11 }
12 }
13
14 fallback() external payable{}
15
16 receive() external payable{}

Figure 2.3: Solidity listing of payroll, receive and fallback functions.

5 ©2022-23 smerf.net

Ethereum: Week 18 2 PAYROLL

Code Completion

1 function initialise() public ownerOnly {
2 requite(!init, "Already initialised");
3 employees.push(0x5D54265716A05582dd039251D9321AC3ce221a1a);
4 accounts[employees[0]]=employees[0].balance;
5 employees.push(0xAa128cb783639f52184c4A5c2C5Fd623f18C2049);
6 accounts[employees[1]]=employees[1].balance;
7 employees.push(0x15bdBe61bE271254518858153858B9fd8cFCE555);
8 accounts[employees[2]]=employees[2].balance;
9 init=true;

10 }
11 }

Figure 2.4: Solidity listing of initialise function.

2.4 Initialise
15–20

Sometimes as testers, it may be necessary to speed things up. This can
be done by creating an initialise function that can enter the addresses
automatically upon being invoked.

Complete the code in Fig. 2.4, compile, deploy and answer why the
require function is needed?

6 ©2022-23 smerf.net

Ethereum: Week 18 3 TRUFFLE

3 Truffle
20–25

These are the steps to follow to complete a unit test.

3.1 Setup

Complete the following in the VM provided:

• open a terminal for command line.

• make a directory, mkdir truffleProject

• change to this directory, cd truffleProject

• type truffle init

• type code .

7 ©2022-23 smerf.net

Ethereum: Week 18 3 TRUFFLE

Code Completion

1 //SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.0;
3
4 contract mfc{
5 uint8 sum;
6 function add(uint8 _x, uint8 _y) public returns (uint8){
7 require(_x + _y <256);
8 return uint8(_x + _y);
9 }

10 }

Figure 3.1: Solidity listing of mfc contract.

3.2 Contract

In the contracts folder create a new file, mfc.sol. Write this as displayed
in Fig. 3.1.

8 ©2022-23 smerf.net

Ethereum: Week 18 3 TRUFFLE

Code Completion

1 networks: {
2 // Useful for testing. The ‘development‘ name is special - truffle uses it by default
3 // if it’s defined here and no other network is specified at the command line.
4 // You should run a client (like ganache-cli, geth or parity) in a separate terminal
5 // tab if you use this network and you must also set the ‘host‘, ‘port‘ and ‘network_id‘
6 // options below to some value.
7 //
8 development: {
9 host: "127.0.0.1", // Localhost (default: none)

10 port: 7545, // Standard Ethereum port (default: none)
11 network_id: "*", // Any network (default: none)
12 },

Figure 3.2: Solidity listing of mfc contract.

3.3 Configuation

In the truffle-config.js file, make the following changes as indicated
in Fig. 3.2.

9 ©2022-23 smerf.net

Ethereum: Week 18 3 TRUFFLE

Code Completion

1 const mfc = artifacts.require("mfc");
2 module.exports = function (deployer){
3 deployer.deploy(mfc);
4 }

Figure 3.3: Solidity listing of 2_mfc.js.

3.4 Migrations

In the migrations folder create a new file 2_mfc.js and type the code in
Fig. 3.3.

10 ©2022-23 smerf.net

Ethereum: Week 18 3 TRUFFLE

Code Completion

1 const mfc = artifacts.require("mfc");
2 module.exports = function (deployer){
3 deployer.deploy(mfc);
4 }

Figure 3.4: Solidity listing of test-mfc contract.

3.5 Assert

Create a new file in the test directory, named, test-mfc.sol and com-
plete the code in Fig. 3.4

11 ©2022-23 smerf.net

Ethereum: Week 18 REFERENCES

3.6 Testing

Finally, test by the following instructions:

• Open a terminal

• make sure you are in the truffleProject directory created earlier

• type truffle compile

• type truffle test

4 Reading

Read Ch. 8 in [?]

References

[1] Ritesh Modi. Solidity Programming Essentials. Packt, 2018.

12 ©2022-23 smerf.net

	Network using MetaMask and Ganache
	Payroll
	Access Modifiers
	require
	Payroll
	Initialise

	Truffle
	Setup
	Contract
	Configuation
	Migrations
	Assert
	Testing

	Reading

