
Ethereum
Blockchain Development

Week 17

Introduction

The intention of this lab is to look at functions and how variables are stored.
All the exercises are completed in Remix IDE.

Code Completion

Writing code in a new language can be a steep learning curve. The
approach here is to provide some code with underscores (_) that you
are required to complete. These underscores are there to help you.
By completing these exercises you will be improving your skills and
knowledge of Solidity.

Each exercise starts on a new page. The red numbers in the right-
hand margin are estimated minutes you should spend on each exercise.
The length of the exercise depends on the bandwidth available to you. If
the bandwidth availble to you is low then it is advised that you complete
§?? first.

1

remix.ethereum.org

Ethereum: Week 17 1 CLASS INHERITANCE

Quadrangle

+ Area
+ Colour
+ Perimeter
+ Shape

+ setColourAndShape()
+ getPerimeter()
+ displayAll()

Square

+ width

+ setWidth(uint)
+ setArea()
+ setPerimeter()

Rectangle

+ width
+ height

+ setWidthHeight(uint, uint)
+ setArea()
+ setPerimeter()

Figure 1: The class diagram for shapes

1 Class Inheritance
25–30

Examine the class diagram in Fig. 1. Write 3 classes as contracts and
execute in a fourth class, Test. In the class instance of Test provide
an object rectangle and square and calculate the areas and perimeters
of each shape using the functions indicated in the class diagram in Fig.1.
Finally, add an event in the Quadrangle class and emit this event in the
displayAll function, then make a call to this function from Test.

2 ©2022-23 smerf.net

Ethereum: Week 17 2 INTERFACE: INTRODUCTION

�interface�
Animal

+ noise

makeNoise

Dog

Cat

Figure 2: The class diagram for Animal Noises. This illustrates the use of
an interface.

2 Interface: Introduction
15-20

Examine the class diagram in Fig. 2. Open the remix editor and add a
new file. Write in solidity the interface as a contract. Then implement the
two other classes that use the interface. The Dog should return a noise
“woof” and the cat contract returns “miaow”. Write this and implement in
the remix editor.

3 ©2022-23 smerf.net

Ethereum: Week 17 3 PRIVATE NETWORKS

3 Private Networks

3.1 Download VM
5

The VM is downloadable from smerf server1. This VM has the capability to
setup a private network. Download the VM on your personal laptop, and in-
stall using Oracle Virtual Box Manager. Further information about VM and
their implementation can be found in Learning Week 1. The passphase for
this VM is “4125”.

3.2 Private Network
5

Create a private network for ethereum using Ganache and desktop remix-
ide by opening a file manager in the GUI. This should reveal a “home”
directory. Click on the “home” directory and you should find the “Ganache”
and “Remix” directories. In each of these there is an *.AppImage file,
double-click on each of these and wait - be patient this takes some time
to set up - and the desktop remix-ide and Ganache should appear. For
Ganache click on the "Quickstart" button. Familiarise yourself with the
Ganache environment.

3.3 Contract
25–30

Write a contract that will send money from one account to another on
Ganache. Implement and run this contract using the send and transfer
methods. Create an event that emits the amount being transferred and
the balance of the sender. Test the functions and what happens when
the amount sent exceeds the account balance? Write a function that will
check the funds prior to the transaction, and only proceed with the contract
if there is sufficient funds in the account. Use events to emit an appropriate
message.

To help you with this task complete the code in Fig. ?? on the next
page.

Compile, deploy and test this contract.
1The time spent on this exercise depends on the bandwidth available to you.

4 ©2022-23 smerf.net

https://blockchain.smerf.net/Ethereum.zip

Ethereum: Week 17 3 PRIVATE NETWORKS

Code Completion

1 //SPDX-License-Identifier: GPL2.0
2 pragma solidity ^0.8.0;
3 contract account{
4 _______ (address __ uint) accountBalance;
5
6 event sentMsg(address, address, uint, bool);
7 event transferMsg(address, address, uint, string);
8
9 function setAccount() public {

10 accountBalance[__________] = msg.sender.balance;
11 }
12
13 function setAccount(address _account) public {
14 accountBalance[_account] = ________.balance;
15 }
16
17 function getAddress() public ____ returns(address){
18 return msg.sender;
19 }
20
21 function getBalance() public ____ returns(uint){
22 return (accountBalance[msg.sender]);
23 }
24
25 function getBalanace(address _account) public ____ returns(uint){
26 return (______________[________]);
27 }
28
29 function sendEther (address _______ _to) public _______ {
30 bool sent;
31 uint amount = ___._____;
32 if (amount < accountBalance[___.______]) {
33 sent = ___.send(amount);
34 if (sent){
35 accountBalance[___.______]-=amount;
36 accountBalance[___]+=amount;
37 }
38 }
39 emit sentMsg(___.______, _to, amount, sent);
40 }
41
42 function transferEther(address _______ _to) public _______ {
43 uint amount = ___._____;
44 string memory eventMsg = "Transferred Failed";
45 if (amount < accountBalance[___.______]) {
46 ___.transfer(amount);
47 accountBalance[___.______]-=amount;
48 accountBalance[___]+=amount;
49 eventMsg = "Transfer Completed";
50 }
51 emit transferMsg(___.______, _to, amount, eventMsg);
52 }
53 }

Figure 3: Listing for ex3.sol, account for an Ethereum contract

5 ©2022-23 smerf.net

Ethereum: Week 174 BUILDING A CONTRACT FROM AN INTERFACE

Code Completion

1 //SPDX-License-Identifier: GPL2.0
2 pragma solidity ^0.8.0;
3
4 _________ SimpleToken{
5 function createAccount(address _account) ________;
6 function unfreezeAccount(address _account) ________;
7 function freezeAccount(address _account) ________;
8 function transfer(address _to, uint _amount) ________;
9 }

Figure 4: Solidity listing for an interface for a SimpleCoin application

4 Building a Contract from an Interface
25-30

Open the Ethereum VM and start up Ganache and Remix. Ensure that
this exercise is deployed to Ganache, as shown in the previous exercise.

Complete the code in Fig.3 that shows a listing of an interface for a
SimpleToken and the contract.

There are four functions for this simple application: freezeAccount,
unfreezeAccount, transfer, & createAccount.

Create a contract as shown in fig. 4, which inherits the interface SimpleToken.
Develop, compile and implement the following functions:

freezeAccount : sets boolean value to true for the provided address in
the mapping. This prevents the transfer of coins.

unfreezeAccount : set a boolean value to false for the provided address
in the mapping. This allows the transfer of coins.

transfer : transfers token (not ethereum) and debits and credits accounts
of sender and receiver, respectively.

createAccount : similar to a constructor. Adds an account to the hashmap,
with a default balance set to the MAX_LIMIT and adds an account to
the freezeMap mapping and sets the default to false.

6 ©2022-23 smerf.net

Ethereum: Week 174 BUILDING A CONTRACT FROM AN INTERFACE

Code Completion

1 contract MDXToken is SimpleToken{
2 _______ (address __ uint) public balanceMap;
3 _______ (address __ bool) public frozenMap;
4 uint ________ MAX_LIMIT = 1000000000;
5
6 _____ transferMsg(address, uint, string);
7
8 ________ createAccount (address _account) public ________ {
9 __________[_account] = MAX_LIMIT;

10 _________[_account] = false;
11 }
12
13 ________ transfer(address _to, uint _amount) public ________ {
14 string ______ eventMsg="Transfer failed";
15 if((!frozenMap[__________]) && (_amount < balanceMap[__________])){
16 balanceMap[msg.sender] __ _amount;
17 balanceMap[_to] __ _amount;
18 eventMsg="Transfer completed";
19 }
20 ____ transferMsg(_to, _amount, ________);
21 }
22
23 ________ unfreezeAccount(address _to) public ________{
24 _________[_to] = false;
25 }
26
27 ________ freezeAccount(address _to) public ________ {
28 _________[_to] = true;
29 }
30 }

Figure 5: Solidity listing for a Contract using the interface for a SimpleCoin
application

7 ©2022-23 smerf.net

Ethereum: Week 17 REFERENCES

5 Reading

Read chapters 6 & 7 in [1]

References

[1] Ritesh Modi. Solidity Programming Essentials. Packt, 2018.

8 ©2022-23 smerf.net

	Class Inheritance
	Interface: Introduction
	Private Networks
	Download VM
	Private Network
	Contract

	Building a Contract from an Interface
	Value and balance
	Reading

