
CST4125: Blockchain Development
Week: 16

Title: Solidity OOP

Dr Ian Mitchell

Bedfordshire,
UK

2023

smerf.net CST4125:L16 Winter 2023 1 / 40

Contact and Office Hours

Contact Details
Name: Dr Ian Mitchell

Room: TG10

Address: Middlesex University, Computer Science, London, NW4 4BT

email: smerf.net

Office Hours
During term time only

When: Autumn Term: Mondays 1100-1300hrs

Please read notifications or emails

There are occassions that these could be arranged online, e.g., due to industrial action or inclement weather

smerf.net CST4125:L16 Winter 2023 2 / 40

Contact and Office Hours

Contact Details
Name: Dr Ian Mitchell

Room: TG10

Address: Middlesex University, Computer Science, London, NW4 4BT

email: smerf.net

Office Hours
During term time only

When: Autumn Term: Mondays 1100-1300hrs

Please read notifications or emails

There are occassions that these could be arranged online, e.g., due to industrial action or inclement weather

smerf.net CST4125:L16 Winter 2023 2 / 40

Deadlines

Feedback
Description Submission Weight Deadline Formative Summative

1. Hyperledger MyLearning 50% 18th December 2022 LW11-12 12/01/2023

2. Ethereum MyLearning 50% 2nd April 2023 LW23-24 24/04/2023

Resits MyLearning 50-100% 1st July 2023 None None

Deferals MyLearning 50-100% 1st July 2023 None None

smerf.net CST4125:L16 Winter 2023 3 / 40

Lecture Aims

Aim

Much of the programming principles you will have come across in other
languages. This emphasises the structure of solidity. This should be read
with the previous lecture and together they give an overall view of the
programming language solidity.
Much of this has been adapted from various textbooks [1, 2, 3].

smerf.net CST4125:L16 Winter 2023 4 / 40

Lecture Objectives

Structures

Enumerators

Arrays

Mappings

Iteration

Control Structures

Address

Variable scope

smerf.net CST4125:L16 Winter 2023 5 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?

smerf.net CST4125:L16 Winter 2023 6 / 40

State Variable Qualifiers

internal

Default setting. Can be used within the current contract and functions.
Can be used in inherited contract and functions. Cannot be accessed
outside, however, can be viewed.

private

Similar to internal. Can only be used in contracts declaring them. Cannot
be used in inherited contracts.

public

Makes them accessible. The compiler will create getter functions.

constant

Makes them immutable, variable must be assigned at declaration.

smerf.net CST4125:L16 Winter 2023 7 / 40

State Variable Qualifiers

internal

Default setting. Can be used within the current contract and functions.
Can be used in inherited contract and functions. Cannot be accessed
outside, however, can be viewed.

private

Similar to internal. Can only be used in contracts declaring them. Cannot
be used in inherited contracts.

public

Makes them accessible. The compiler will create getter functions.

constant

Makes them immutable, variable must be assigned at declaration.

smerf.net CST4125:L16 Winter 2023 7 / 40

State Variable Qualifiers

internal

Default setting. Can be used within the current contract and functions.
Can be used in inherited contract and functions. Cannot be accessed
outside, however, can be viewed.

private

Similar to internal. Can only be used in contracts declaring them. Cannot
be used in inherited contracts.

public

Makes them accessible. The compiler will create getter functions.

constant

Makes them immutable, variable must be assigned at declaration.

smerf.net CST4125:L16 Winter 2023 7 / 40

State Variable Qualifiers

internal

Default setting. Can be used within the current contract and functions.
Can be used in inherited contract and functions. Cannot be accessed
outside, however, can be viewed.

private

Similar to internal. Can only be used in contracts declaring them. Cannot
be used in inherited contracts.

public

Makes them accessible. The compiler will create getter functions.

constant

Makes them immutable, variable must be assigned at declaration.

smerf.net CST4125:L16 Winter 2023 7 / 40

Enumerator Types

Custom user-defined data type with a predetermined set of values

Explicitly converted to uint

First having zero, second one, and so on...

enum Gender {male, female, nonBinary}
What value is Gender gender = Gender.female;

smerf.net CST4125:L16 Winter 2023 8 / 40

Structure

1

2 enum Gender {female , male ,

nonBinary}

3

4 struct Person {

5 string firstName;

6 string lastName;

7 uint2 age;

8 Gender gender;

9 // String address;

10 }

Structure

User-define data type

Composite data type

Consist of variables only, no
code

Instance of a structure

person = Person{"Ian",
"Mitchell", "53", 0};

smerf.net CST4125:L16 Winter 2023 9 / 40

Byte Data Type

1 contract example{

2 bytes1 hex1 = 0xF0;

3 bytes1 dec1 = 240;

4 bytes1 neg = -10;

5 bytes1 char = ’a’;

6 bytes2 hex2 = 0x200;

7 }

Bytes

Bytes refer to 8 bits signed
integers

Multiple bytes

bytes1, bytes2, ...,

bytes32

fixed sized byte arrays

value types

default initial value: 0x00

smerf.net CST4125:L16 Winter 2023 10 / 40

Arrays revisited

1 contract example{

2 int[4] ia1;

3 int[] ia2;

4 byte [4] ba1;

5 int[2] = [int(1), 2];

6 int[] = new int [](2);

7 int[] = [int(1), 2];

8 }

Syntax

Store hex, why?

Unsigned Integer, max. value
for 1 byte?

Signed Integer

multiple bytes

Store outside the range,
compile error.

smerf.net CST4125:L16 Winter 2023 11 / 40

Array properties

index : access individual elements. Not supported on Strings.
Write to arrays, except the string type and fixed sized byte
arrays.

push : is only supported by dynamic arrays.

length : viewing/reading is supported by all arrays, except string
types. Modifying is supported by dynamic arrays and bytes

smerf.net CST4125:L16 Winter 2023 12 / 40

Byte arrays

1 contract example{

2 bytes byteArray1;

3 byte[] byteArray2;

4 byteArray1 = "Ian

Mitchell";

5 byteArray1 = new bytes

(100);

6 :

7 :

8 byteArray1.push(byte

(200));

9 return byteArray1.

length ();

10 bytesArray1.length = 8;

11 }

bytes v. byte[]

bytes

byte[]

bytes access length property

bytes access pop & push
methods

byte[] can also access these

smerf.net CST4125:L16 Winter 2023 13 / 40

Real Numbers

ufixed, fixed

not supported in current version

smerf.net CST4125:L16 Winter 2023 14 / 40

String Array

1 contract example{

2 String name = "Ian

Mitchell";

3 Bytes byteName = bytes(

name);

4 }

Strings

Strings are dynamic data types

Based on byte arrays

Strings cannot be:

pushed
popped
access length property

Overcome this?

smerf.net CST4125:L16 Winter 2023 15 / 40

Mappings

1 contract example{

2 mapping (uint => address)

scores;

3 }

Mappings

Ubiquitous throughout
solidity contracts

Similar to hash tables or
dictionaries

Store key-value pairs

Retrieve values based on
key, not index

mapping (keyType =>

valueType) x;

No iterator

Only declared as a state
variable

smerf.net CST4125:L16 Winter 2023 16 / 40

Mapping
Behaving like an Array

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract mapping1{

5 mapping (uint => address) addressBook;

6 uint index;

7

8 function addAddressBookEntry(address entry)

public returns (uint){

9 index +=1;

10 addressBook[index]=entry;

11 return index;

12 }

13

14 function getAddressBookEntry(uint idx) public view

returns (address){

15 return addressBook[idx];

16 }

17 } smerf.net CST4125:L16 Winter 2023 17 / 40

Convert a Mapping

1 function convertToArray () public view returns (

address [] memory){

2 address [] memory addressArray = new address [](

index);

3 for (uint i=1; i<index; i++){

4 addressArray[i-1] = addressBook[i];

5 }

6 return addressArray;

7 }

smerf.net CST4125:L16 Winter 2023 18 / 40

Arrays v. Mappings

Arrays

Static and Dynamic

Avoid Dynamic

Iterators

push, pop, length

Have both

Retrieval

Mappings

reference type

Always use a mapping, unless
you cannot

No iterators

key - value pairs

Retrieval

Size

Conversions are expensive and
cost more gas, be careful.

Nested mapping

smerf.net CST4125:L16 Winter 2023 19 / 40

Date

Unit Calculation Seconds

Day 24*60*60 86,400

Hour 60 * 60 3,600

Table: Seconds in a Day and Hour

Unix Timestamp

Number of seconds since 1st Jan 1970

32-bit unsigned integer

Limitations: 19th Jan 2038

time.is

smerf.net CST4125:L16 Winter 2023 20 / 40

Variables

Hoisting

Default values

Static type

Declare variables at end of
function?

un-Hoist in later compilers

Scope

Contract-level global variables

Function-level local variables

State variables:

public
internal
private

smerf.net CST4125:L16 Winter 2023 21 / 40

Variable conversion

Type conversion

uint8 x=512;

byte y=512;

Implicit conversion

No need for an operator

No loss of data

Convert small to large

uint8 x=0xFF;

uint16 y=0xFFFF;

x=y;

y=x;

uint32 z;

z=x+y;

Explicit type conversions

Due to loss of data

Range

uint 6= -1;

uint8 6= 0x100;

uint8 6= uint16;

Avoid address conversion

smerf.net CST4125:L16 Winter 2023 22 / 40

Explicit Type Conversions

1 int y = -2;

2 uint x = uint(y);//0

xfffe

3 //64 Hex chars (2*32)

4 // -3 in two’s complement

5 // flip and add 1

6 uint32 a = 0x12345678; // 4 bytes , 32 bit

7 uint16 b = a; // b will be 0x5678

8 // high order bits truncated

9 uint16 d = 0xFFFF;

10 uint32 e = d; //d = 0x0000FFFF

11 // padded 0s for high order bits

12 assert (d==e);

13

14

smerf.net CST4125:L16 Winter 2023 23 / 40

Explicit byte Conversion

1 bytes2 a = 0x1234; //16-bit number

2 bytes1 b = bytes1(a); // b = 0x12

3 // truncate sequence

4 bytes2 d = 0xfedc;

5 bytes4 e = bytes4(a); // e = 0xfedc0000

6 // padded 0s on right

7 assert(a[1] == b[0]);

8 assert(d[0] == e[3]);

9 assert(d[1] == e[2]);

smerf.net CST4125:L16 Winter 2023 24 / 40

Explicit byte to uint Conversion

1 bytes2 a = 0xfedc;

2 uint32 b = uint16(a); // bytes2 == uint16

3 // b = 0x0000fedc;

4 uint64 c = a; // fail

5 uint64 c = uint64(bytes4(a));

6 // convert 2 to 4 byte

7 // convert 4 byte to 64-bit

8 uint8 d = uint8(uint16(a));

9 // d = 0xdc;

10 uint8 e = uint8(bytes1(a));

11 // e = 0xfe;

smerf.net CST4125:L16 Winter 2023 25 / 40

Literals conversion

1 bytes2 a = 100; //error , must populate all bytes

2 bytes2 b = 0x123; //error , ditto

3 bytes2 c = 0xFF; //error , ditto

4 bytes2 d = 0xFFFF; // compile

5 bytes2 e = 0x00FF; // compile

6 bytes2 f = 0; // exception , allows zero

7 bytes2 g = 0x0; // exception , ditto

smerf.net CST4125:L16 Winter 2023 26 / 40

Comparison Operators

Operators Description Example

== Equals x==100;

!= Not equals x!=100;

> Greater than x>100;

< Less than x<100;

>= Greater than
and equal to

x>=100;

<= Less than and
equal to

x<=100;

Table: Comparison Operators in Solidity

smerf.net CST4125:L16 Winter 2023 27 / 40

Logical Operators

Operators Description Example

&& AND (x>10) && (x<20)

|| OR (x<10) || (x>20)
! NOT !(x==10)

Table: Logical Operators in Solidity

smerf.net CST4125:L16 Winter 2023 28 / 40

Bitwise Operators

Operators Description Example

∼ bitwise NOT ∼x
>> shift right x>>2

<< shift left x<<2

& bitwise AND x&y

| bitwise OR x|y
∧ bitwise XOR x∧y

Table: Bitwise Operators in Solidity

smerf.net CST4125:L16 Winter 2023 29 / 40

Mathematical Operators

Operators Description Example Order

++ Postfix incre-
ment

i++ 1

-- Postfix decre-
ment

i-- 1

++ Prefix incre-
ment

++i 2

-- Prefix decre-
ment

--i 2

** Exponentiation x**3 3

* Multiplication x*4 4

/ Division x/4 4

% Modulo x%4 4

+ Addition x+5 5

- Subtraction x-5 5

Table: Mathematical Operators in Solidity, showing precedence in right column.
smerf.net CST4125:L16 Winter 2023 30 / 40

Assignment Operators

Operators Description Example

<<=, >>= shift assignment x<<=2

+=, -= add, subtract assign-
ment

x+=2

*=, /=,

%=

multiply, divide, mod-
ulo assignment

x*=2

= assignment x=2

| =, ∧ =,

&=

Bitwise assigment x&=2

Table: Assignment Operators in Solidity, order of precedence is 15

smerf.net CST4125:L16 Winter 2023 31 / 40

While Loop

1 while (expression is true) {

2 statement;

3 statement;

4 }

smerf.net CST4125:L16 Winter 2023 32 / 40

Do ... While Loop

1 initialise counter value;

2 do {

3 statement;

4 change counter value;

5 } while (condition is true);

6

7 uint i=0;

8 do {

9 i++;

10 } while(i<10);

11

smerf.net CST4125:L16 Winter 2023 33 / 40

For Loop

1 for(initialise counter value; stopping condition;

change counter value){

2 statement;

3 statement;

4 }

smerf.net CST4125:L16 Winter 2023 34 / 40

If control

1 if(condition/expression is true) {

2 statement;

3 statement;

4 }

5 else if (this condition/expression is true) {

6 statement;

7 statement;

8 }

9 else {

10 statement;

11 statement;

12 }

smerf.net CST4125:L16 Winter 2023 35 / 40

Break statement

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract A{

5 uint max =3;

6

7 event display(uint);

8

9 function loopy () public {

10 for(uint i=0; i<10; i++){

11 if(i==max)

12 break;

13 emit display(i);

14 }

15 }

16 }

smerf.net CST4125:L16 Winter 2023 36 / 40

Continue statement

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract A{

5 uint max =3;

6

7 event display(uint);

8

9 function loopy () public {

10 for(uint i=0; i<10; i++){

11 if(i<=max)

12 {continue ;}

13 emit display(i);

14 }

15 }

16 }

smerf.net CST4125:L16 Winter 2023 37 / 40

Summary

Variables

Data Types

Operators

Programming

Complete these exercises and ready to start writing simple smart
contracts

smerf.net CST4125:L16 Winter 2023 38 / 40

Reading

Read Chapter 4 in [4]

smerf.net CST4125:L16 Winter 2023 39 / 40

References I

[1] Andreas M. Antonopoulos and Gavin Wood. Mastering Ethereum.
1st. O’Reilly, 2018.

[2] R. Infante. Building Ethereum Dapps. Manning, 2019. isbn:
9781617295157.

[3] Ritesh Modi. Solidity Programming Essentials. Packt, 2018. isbn:
978-1-78883-138-3.

[4] X. Wu, Z. Zhihong, and D. Song. Learn Ethereum. 1st. Packt, 2019.
isbn: 9781789954111.

smerf.net CST4125:L16 Winter 2023 40 / 40

