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Contact and Office Hours

Contact Details
Name: Dr Ian Mitchell

Room: TG10

Address: Middlesex University, Computer Science, London, NW4 4BT

email: smerf.net

Office Hours
During term time only

When: Autumn Term: Mondays 1100-1300hrs

Please read notifications or emails

There are occassions that these could be arranged online, e.g., due to industrial action or inclement weather
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Deadlines

Feedback
Description Submission Weight Deadline Formative Summative

1. Hyperledger MyLearning 50% 18th December 2022 LW11-12 12/01/2023

2. Ethereum MyLearning 50% 2nd April 2023 LW23-24 24/04/2023

Resits MyLearning 50-100% 1st July 2023 None None

Deferals MyLearning 50-100% 1st July 2023 None None
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Lecture Aims

Aim

Much of the programming principles you will have come across in other
languages. This emphasises the structure of solidity. This should be read
with the previous lecture and together they give an overall view of the
programming language solidity.
Much of this has been adapted from various textbooks [1, 2, 3].
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Lecture Objectives

Structures

Enumerators

Arrays

Mappings

Iteration

Control Structures

Address

Variable scope
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State Variables

Do they Store Values?

Are they declared in Contracts?

Are they stored on the blockchain?

Definition?

Can the value stored in them change?

Can the memory allocation change?

Do they require a data type?
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State Variable Qualifiers

internal

Default setting. Can be used within the current contract and functions.
Can be used in inherited contract and functions. Cannot be accessed
outside, however, can be viewed.

private

Similar to internal. Can only be used in contracts declaring them. Cannot
be used in inherited contracts.

public

Makes them accessible. The compiler will create getter functions.

constant

Makes them immutable, variable must be assigned at declaration.
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Enumerator Types

Custom user-defined data type with a predetermined set of values

Explicitly converted to uint

First having zero, second one, and so on...

enum Gender {male, female, nonBinary}
What value is Gender gender = Gender.female;
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Structure

1

2 enum Gender {female , male ,

nonBinary}

3

4 struct Person {

5 string firstName;

6 string lastName;

7 uint2 age;

8 Gender gender;

9 // String address;

10 }

Structure

User-define data type

Composite data type

Consist of variables only, no
code

Instance of a structure

person = Person{"Ian",
"Mitchell", "53", 0};
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Byte Data Type

1 contract example{

2 bytes1 hex1 = 0xF0;

3 bytes1 dec1 = 240;

4 bytes1 neg = -10;

5 bytes1 char = ’a’;

6 bytes2 hex2 = 0x200;

7 }

Bytes

Bytes refer to 8 bits signed
integers

Multiple bytes

bytes1, bytes2, ...,

bytes32

fixed sized byte arrays

value types

default initial value: 0x00
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Arrays revisited

1 contract example{

2 int[4] ia1;

3 int[] ia2;

4 byte [4] ba1;

5 int[2] = [int(1), 2];

6 int[] = new int [](2);

7 int[] = [int(1), 2];

8 }

Syntax

Store hex, why?

Unsigned Integer, max. value
for 1 byte?

Signed Integer

multiple bytes

Store outside the range,
compile error.

smerf.net CST4125:L16 Winter 2023 11 / 40

Array properties

index : access individual elements. Not supported on Strings.
Write to arrays, except the string type and fixed sized byte
arrays.

push : is only supported by dynamic arrays.

length : viewing/reading is supported by all arrays, except string
types. Modifying is supported by dynamic arrays and bytes
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Byte arrays

1 contract example{

2 bytes byteArray1;

3 byte[] byteArray2;

4 byteArray1 = "Ian

Mitchell";

5 byteArray1 = new bytes

(100);

6 :

7 :

8 byteArray1.push(byte

(200));

9 return byteArray1.

length ();

10 bytesArray1.length = 8;

11 }

bytes v. byte[]

bytes

byte[]

bytes access length property

bytes access pop & push
methods

byte[] can also access these
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Real Numbers

ufixed, fixed

not supported in current version

smerf.net CST4125:L16 Winter 2023 14 / 40



String Array

1 contract example{

2 String name = "Ian

Mitchell";

3 Bytes byteName = bytes(

name);

4 }

Strings

Strings are dynamic data types

Based on byte arrays

Strings cannot be:

pushed
popped
access length property

Overcome this?
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Mappings

1 contract example{

2 mapping ( uint => address )

scores;

3 }

Mappings

Ubiquitous throughout
solidity contracts

Similar to hash tables or
dictionaries

Store key-value pairs

Retrieve values based on
key, not index

mapping ( keyType =>

valueType ) x;

No iterator

Only declared as a state
variable
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Mapping
Behaving like an Array

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract mapping1{

5 mapping (uint => address) addressBook;

6 uint index;

7

8 function addAddressBookEntry( address entry)

public returns (uint){

9 index +=1;

10 addressBook[index ]=entry;

11 return index;

12 }

13

14 function getAddressBookEntry(uint idx) public view

returns (address){

15 return addressBook[idx];

16 }
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Convert a Mapping

1 function convertToArray () public view returns (

address [] memory){

2 address [] memory addressArray = new address [](

index);

3 for (uint i=1; i<index; i++){

4 addressArray[i-1] = addressBook[i];

5 }

6 return addressArray;

7 }
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Arrays v. Mappings

Arrays

Static and Dynamic

Avoid Dynamic

Iterators

push, pop, length

Have both

Retrieval

Mappings

reference type

Always use a mapping, unless
you cannot

No iterators

key - value pairs

Retrieval

Size

Conversions are expensive and
cost more gas, be careful.

Nested mapping
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Date

Unit Calculation Seconds

Day 24*60*60 86,400

Hour 60 * 60 3,600

Table: Seconds in a Day and Hour

Unix Timestamp

Number of seconds since 1st Jan 1970

32-bit unsigned integer

Limitations: 19th Jan 2038

time.is
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Variables

Hoisting

Default values

Static type

Declare variables at end of
function?

un-Hoist in later compilers

Scope

Contract-level global variables

Function-level local variables

State variables:

public
internal
private
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Variable conversion

Type conversion

uint8 x=512;

byte y=512;

Implicit conversion

No need for an operator

No loss of data

Convert small to large

uint8 x=0xFF;

uint16 y=0xFFFF;

x=y;

y=x;

uint32 z;

z=x+y;

Explicit type conversions

Due to loss of data

Range

uint 6= -1;

uint8 6= 0x100;

uint8 6= uint16;

Avoid address conversion
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Explicit Type Conversions

1 int y = -2;

2 uint x = uint(y);//0

xfffffffffffffffffffffffffffffffffffffffffffffffffffffe

3 //64 Hex chars (2*32)

4 // -3 in two’s complement

5 // flip and add 1

6 uint32 a = 0x12345678; // 4 bytes , 32 bit

7 uint16 b = a; // b will be 0x5678

8 // high order bits truncated

9 uint16 d = 0xFFFF;

10 uint32 e = d; //d = 0x0000FFFF

11 // padded 0s for high order bits

12 assert (d==e);

13

14
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Explicit byte Conversion

1 bytes2 a = 0x1234; //16-bit number

2 bytes1 b = bytes1(a); // b = 0x12

3 // truncate sequence

4 bytes2 d = 0xfedc;

5 bytes4 e = bytes4(a); // e = 0xfedc0000

6 // padded 0s on right

7 assert(a[1] == b[0]);

8 assert(d[0] == e[3]);

9 assert(d[1] == e[2]);
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Explicit byte to uint Conversion

1 bytes2 a = 0xfedc;

2 uint32 b = uint16(a); // bytes2 == uint16

3 // b = 0x0000fedc;

4 uint64 c = a; // fail

5 uint64 c = uint64(bytes4(a));

6 // convert 2 to 4 byte

7 // convert 4 byte to 64-bit

8 uint8 d = uint8(uint16(a));

9 // d = 0xdc;

10 uint8 e = uint8(bytes1(a));

11 // e = 0xfe;
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Literals conversion

1 bytes2 a = 100; //error , must populate all bytes

2 bytes2 b = 0x123; //error , ditto

3 bytes2 c = 0xFF; //error , ditto

4 bytes2 d = 0xFFFF; // compile

5 bytes2 e = 0x00FF; // compile

6 bytes2 f = 0; // exception , allows zero

7 bytes2 g = 0x0; // exception , ditto
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Comparison Operators

Operators Description Example

== Equals x==100;

!= Not equals x!=100;

> Greater than x>100;

< Less than x<100;

>= Greater than
and equal to

x>=100;

<= Less than and
equal to

x<=100;

Table: Comparison Operators in Solidity
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Logical Operators

Operators Description Example

&& AND (x>10) && (x<20)

|| OR (x<10) || (x>20)
! NOT !(x==10)

Table: Logical Operators in Solidity

smerf.net CST4125:L16 Winter 2023 28 / 40

Bitwise Operators

Operators Description Example

∼ bitwise NOT ∼x
>> shift right x>>2

<< shift left x<<2

& bitwise AND x&y

| bitwise OR x|y
∧ bitwise XOR x∧y

Table: Bitwise Operators in Solidity
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Mathematical Operators

Operators Description Example Order

++ Postfix incre-
ment

i++ 1

-- Postfix decre-
ment

i-- 1

++ Prefix incre-
ment

++i 2

-- Prefix decre-
ment

--i 2

** Exponentiation x**3 3

* Multiplication x*4 4

/ Division x/4 4

% Modulo x%4 4

+ Addition x+5 5

- Subtraction x-5 5

Table: Mathematical Operators in Solidity, showing precedence in right column.
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Assignment Operators

Operators Description Example

<<=, >>= shift assignment x<<=2

+=, -= add, subtract assign-
ment

x+=2

*=, /=,

%=

multiply, divide, mod-
ulo assignment

x*=2

= assignment x=2

| =, ∧ =,

&=

Bitwise assigment x&=2

Table: Assignment Operators in Solidity, order of precedence is 15
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While Loop

1 while ( expression is true) {

2 statement;

3 statement;

4 }
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Do ... While Loop

1 initialise counter value;

2 do {

3 statement;

4 change counter value;

5 } while ( condition is true);

6

7 uint i=0;

8 do {

9 i++;

10 } while( i<10 );

11
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For Loop

1 for( initialise counter value; stopping condition;

change counter value){

2 statement;

3 statement;

4 }
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If control

1 if( condition/expression is true) {

2 statement;

3 statement;

4 }

5 else if ( this condition/expression is true) {

6 statement;

7 statement;

8 }

9 else {

10 statement;

11 statement;

12 }
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Break statement

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract A{

5 uint max =3;

6

7 event display(uint);

8

9 function loopy () public {

10 for(uint i=0; i<10; i++){

11 if( i==max )

12 break;

13 emit display(i);

14 }

15 }

16 }
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Continue statement

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract A{

5 uint max =3;

6

7 event display(uint);

8

9 function loopy () public {

10 for(uint i=0; i<10; i++){

11 if( i<=max )

12 {continue ;}

13 emit display(i);

14 }

15 }

16 }
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Summary

Variables

Data Types

Operators

Programming

Complete these exercises and ready to start writing simple smart
contracts
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Reading

Read Chapter 4 in [4]
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