
Ethereum
Blockchain Development

Week 16

Introduction
The intention of this lab is to look at general programming in solidity. All the
exercises are completed in Remix IDE.

Code Completion

Writing code in a new language can be a steep learning curve. The ap-
proach here is to provide some code with underscores () that you are re-
quired to complete. These underscores are there to help you. By completing
these exercises you will be improving your skills and knowledge of Solid-
ity. Coding requires practice, so you will need to practice these and other
exercises outside this lesson as independent study.

Each exercise starts on a new page. The red numbers in the right-hand margin
are estimated minutes you should spend on each exercise.

1

remix.ethereum.org

Ethereum: Week 16 1 STRUCTURES

Code Completion

1 _/____-License-__________: MIT
2 ______ solidity ______;
3 ________ ex1{
4 ____ Gender {male, female, nonBinary}
5 ______ Person{
6 string firstName;
7 ______ lastName;
8 _____ age;
9 Gender gender;

10 }
11 Person person;
12 ________ setPerson(string memory _firstName, string memory _lastName, uint8 _age, Gender

_gender) public {
13 ______.firstName = _firstName;
14 ______.lastName = _lastName;
15 ______.age = _age;
16 ______.gender = _gender;
17 }
18 function getPerson() ______ ____ returns(_erson ______){
19 return person;
20 }
21 function genderQ() public ____ _______(_ender){
22 return ______.gender;
23 }
24 }

Figure 1: Structure for ex1.sol, type this in a Ethereum contract

1 Structures
5–10

Complete the contract that contains two functions that store and display the struc-
ture in Fig. 1.

Consider why it is a bad idea to implement this on a blockchain?

2 ©2022-23 smerf.net

Ethereum: Week 16 2 ARRAYS

Code Completion

1 //_____License___________: GPL2.0
2 ______ solidity ˆ0.8.0;
3 ________ ex2{
4 _____ ________ size = 100;
5 uint[____] array = [10, 20, 30, 40];
6
7 ________ populate() ______ {
8 for(uint i=0; i<size; i++)
9 array[i]=i;

10 }
11 function sumArray() ______ ____ _______(uint){
12 ____ sum=0;
13 for(____ i=__ i<____; i__)
14 sum+=_____[i];
15 return ___;
16 }
17 }

Figure 2: Structure for ex2.sol, type this in a Ethereum contract

TX Cost Parameters
005621930015741404 100 iterations; setter; using

256 bits
000567977501590337 100 iterations; setter; using

16 bits and conversions
000119852500335587 10 iterations; setter; using 16

bits and conversions

Table 1: Table for optimising transaction costs, Gas price: 00000002500000007
Wei

2 Arrays
15–20

Complete the contract in Fig. 2 that that stores numbers 0,..,99 in an array as a
state variable.

Complete the function that populates the values in the array.
Write a function that returns the sum of the all the elements in the array.
Whats the problem? With an array of hundred the transaction cost of setting

the array was: 2248772 Wei. Does the reduction in array size reduce the trans-
action cost? Repeat the problem with an array size of 5, 10 and 100 and record
the cost for setting the array. Are there other ways of optimising the cost? Table
1 shows how optimising parameters can have an effect on transaction cost, it also
demonstrates the reduction in cost caused by a reduction in iterations.

3 ©2022-23 smerf.net

Ethereum: Week 16 3 ITERATION AND SELECTION

3 Iteration and Selection
20–25

Add a function to the previous exercise in §2 that only adds even numbers. Use a
for loop and the continue function to complete this.

3.1 Break
Add a function to calculate the sum of the first n elements of a fixed array of
size 20 containing unsigned integers in the range of 0,..,255. There should be an
additional function to enter a value n, which is stored as a local variable and has to
be less than 20, the size of the fixed array. Use a while loop and a break command
to complete this.

3.2 Event
Write an event called notifySum that adds an integer to the blockchain. Use
the emit keyword to record the sum in both the functions above using this event.
Test and evaluate both your functions.

4 ©2022-23 smerf.net

Ethereum: Week 16 4 MAPPINGS

Code Completion

1 //SPDX-_______-Identifier: ___
2 pragma ________ ˆ0.8.0;
3 ________ ex4{
4 uint8 ________ size = 100;
5 _______ (uint => address) ______ addressMapping;
6 _______[size] ______ addressArray;
7 uint maxIndex;
8
9 ________ addAddressBookEntry(_______ _entry) ______ {

10 ________+=1;
11 addressMapping[________]=_entry;
12 }
13
14 ________ convertToArray() ______ {
15 for (uint i=1; i<=________; i++)
16 addressArray[i-1] = addressMapping[i];
17 }
18 }

Figure 3: Listing for ex4.sol, mapping for an Ethereum contract

4 Mappings
20–25

This section looks at mappings and conversions to arrays. Create a new contract.
Examine and complete the code in Fig.3. How much more efficient is a mapping
than an array?

5 ©2022-23 smerf.net

Ethereum: Week 16 5 DATES

Unit Calculation Seconds
Day 24*60*60 86,400
Hour 60 * 60 3,600

Table 2: Seconds in a Day and Hour

Code Completion

1 __SPDX-_______-Identifier:MIT
2 pragma ________ _0.8._;
3
4 ________ ex5_
5 uint date = block.timestamp;
6 uint remaining;
7 event display(____);
8 ________ secondsToNextBirthday(uint bday) ______ {
9 remaining = bday - date;

10 emit _______(remaining);
11 _
12 _

Figure 4: Listing for ex5.sol, calculating date differences in an Ethereum con-
tract

5 Dates
5–10

Dates in solidity are stored in unix timestamps, which means they can be store as
integers. Unix timestamps are the number of seconds elapsed since 01/01/1970.

Table 2 is a brief outline of the number of seconds in each time unit.
Create a new contract and complete the code listing in Fig.4. To calculate your

next birthday in Unix timestamp, go to time.is and enter your next birthday. Then
execute the function.

6 ©2022-23 smerf.net

https://time.is/Unix_time_converter

Ethereum: Week 16 6 CARD GAME

6 Card Game
25–30

This is a simple game of guessing the card selected. The rules of the game are
simple, and as follows:

1. Player One selects a card, that is stored in a state variable: playerOneCard.

2. Player Two selects a card, that is stored in a state variable: playerTwoCard.

3. The objective is for Player Two to guess the card Player One has selected.

4. If the card select by Player Two matches the card selected by Player One,
then this is the end of the game.

5. If the two cards selected don’t match then Player Two selects another card
and the process is repeated - go to step 2.

Follow the steps below to complete the task above:

1. Create a new file and contract.

2. In the contract have two enum types for the Suit and the Value.

3. In the contract have a structure to represent all cards in the deck, Card.

4. Create two public state variables: playerOneCard and playerTwoCard,
that allow for a Card to be stored.

5. Create two functions: selectPlayerOneCard and selectPlayerTwoCard,
that facilitate the selection of each card to playerOne and playerTwo,
respectively.

6. Create one function that tests if the two cards are equal.

7 ©2022-23 smerf.net

Ethereum: Week 16 7 READING

7 Reading
Read Chapter 4 in [?].

8 ©2022-23 smerf.net

	Structures
	Arrays
	Iteration and Selection
	Break
	Event

	Mappings
	Dates
	Card Game
	Reading

