
CST4125: Blockchain Development
Week: 15

Title: Introduction to Solidity

Dr Ian Mitchell

Bedfordshire,
UK

Winter2023

smerf.net CST4125:L15 Winter 2023 1 / 40

Contact and Office Hours

Contact Details
Name: Dr Ian Mitchell

Room: TG10

Address: Middlesex University, Computer Science, London, NW4 4BT

email: smerf.net

Office Hours
During term time only

When: Autumn Term: Mondays 1100-1300hrs

Please read notifications or emails

There are occassions that these could be arranged online, e.g., due to industrial action or inclement weather

smerf.net CST4125:L15 Winter 2023 2 / 40

Contact and Office Hours

Contact Details
Name: Dr Ian Mitchell

Room: TG10

Address: Middlesex University, Computer Science, London, NW4 4BT

email: smerf.net

Office Hours
During term time only

When: Autumn Term: Mondays 1100-1300hrs

Please read notifications or emails

There are occassions that these could be arranged online, e.g., due to industrial action or inclement weather

smerf.net CST4125:L15 Winter 2023 2 / 40

Deadlines

Feedback
Description Submission Weight Deadline Formative Summative

1. Hyperledger MyLearning 50% 18th December 2022 LW11-12 12/01/2023

2. Ethereum MyLearning 50% 2nd April 2023 LW23-24 24/04/2023

Resits MyLearning 50-100% 1st July 2023 None None

Deferals MyLearning 50-100% 1st July 2023 None None

smerf.net CST4125:L15 Winter 2023 3 / 40

Lecture Objectives

Reference v. Value

Predefined Types

Data Types

Licenses

General Solidity Structure

Functions
Storage Rules
Events
Qualifiers
Modifiers
Declaration and Scope
Parameters

Events

smerf.net CST4125:L15 Winter 2023 4 / 40

Ethereum Client

Definition

Software

Ethereum Spec.

P2P

communicates with other
Ethereum Clients

Interoperate with different
clients

Ethereum is Open Source

LGPL v3.0

Define by a formal spec.

Ethereum Yellow Paper
[wood2014ethereum]

Ethereum Protocols

Parity

Geth

cpp-ethereum/C++

pyethereum/python

censorship resistance?

Full-node 100Gb

Local private Network -
Ganache

cloud-base - remix

Remote-client

Light-node/client

smerf.net CST4125:L15 Winter 2023 5 / 40

Full Node

Advantages

Resilience

Censorship resistance

Validates TX

Disintermediation

Interact and deploy contracts
on public blockchain

Query blockchain status

Query blockchain confidentially

Disadvantages

Significant h/ware

B/width resources

Days to sync

Maintenance and upgrades

Kept live and online

smerf.net CST4125:L15 Winter 2023 6 / 40

Public Testnet

Advantages

less time to sync

less storage - 10Gb

test ether, free from faucets

public blockchains

running live

Disadvantages

Not real money

Cannot test aspects of security

Not realistic

smerf.net CST4125:L15 Winter 2023 7 / 40

Local BC Simulation

Advantages

Ganache

No sync

Small amount of data

You mine first block

No test ether

No other users

No other contracts

Only the ones you deploy

Disadvantages

No other users

No miners

No other contracts

Public contracts

smerf.net CST4125:L15 Winter 2023 8 / 40

Full Client/Node
System Requirements

Geth

100Gb space

Bandwidth

SSD-based, I/O intensive

Ethereum Dimensions

upto 1Tb of data
recommended

smerf.net CST4125:L15 Winter 2023 9 / 40

Full Client/Node
Install

Preliminary

Git: sudo apt install git

Go: Install instructions

Geth requires correct version

Geth: Install instructions

or Parity: Install Instructions

Synchronisation

Download every block

Validate every block and
transaction

From genesis block

Takes time

DoS attacks in 2016

Sync goes smoothly upto block
2.28M

Currently on block 14.93M

Use --fast switch

smerf.net CST4125:L15 Winter 2023 10 / 40

Remote Clients

Subset of functionality

Do not store full blockchain

Faster and less data

Manage Private Keys &
Addresses

Create, sign and broadcast TX

Interact with SCs

Interact with DApps

Links to block explorers, e.g.
etherscan

Inject web3

Examples

Smartphone Wallets

Browser Wallets

smerf.net CST4125:L15 Winter 2023 11 / 40

Solidity

Introduction

Like Javascript & C++

Statically-typed

Case-sensitive

Object-oriented programming
(OOP)

extension .sol

4 high-level constructs
1 pragma
2 comments
3 import
4 contracts/library/interface

Pragma

Directive

Target compiler version

Optional

pragma solidity 0.6.4

Version number: major (6)
followed by minor (4) build

pragma solidity ˆ 0.4.0

Caret is optional:

Will use latest version in a
major build, soˆ0.4.0 would
resort to the latest build
that is 0.4.19
Compile with the major
build only 0.4, and not use
any other major builds

smerf.net CST4125:L15 Winter 2023 12 / 40

Comments and imports

Comments

Single line: //

Multiple line: /* ... */

Natspec:
Natural-Specifications-Format

Imports

import

’path/filename.sol’;

Use . for current directory

Use .. for parent directory

Use / for seperate directories

Note

Some listings in these slides do not have comments or SPDX identifiers.
This is to make the listings clearer and succinct and focus on issues. This
is not meant to be repeated. Always leave a blank line before a function.
Again these are removed in slides for display purposes.

smerf.net CST4125:L15 Winter 2023 13 / 40

Licenses

Software Package Data
Exchange

The Linux Foundation

spdx.org

Lists all license types

Easy way to label source
code’s licenses

One comment per file

The first line

//

SPDX-License-Identifier:

MIT

Why?

Standardise

Determine

Confusion

Eliminate

Comments

List of some Licenses:

Apache-2.0
EUPL-1.2
GPL-3.0
MIT

smerf.net CST4125:L15 Winter 2023 14 / 40

Contract, Libraries & Interface

1 pragma solidity 0.6.19;

2 // this is a single line comment

3 /* this is a

4 multiple line comment */

5

6 contract firstContract{

7

8 }

9

10 contract secondContract{

11

12 }

13

14 library stringLib{

15

16 }

17

18 interface IAccount{

19

20 }

smerf.net CST4125:L15 Winter 2023 15 / 40

Data Types

Common DataTypes

bool

int, int8, int16, ... ,

int256

uint

fixed, ufixed

address

uint[10] Byte Array static

uint[] Byte Array dynamic

enum

struct

mapping

string

bytes, bytes1, bytes2,

...., bytes32

Literals

days

hours

minutes

seconds

wei

szabo

ether

smerf.net CST4125:L15 Winter 2023 16 / 40

Predefined Global

Variables

Message Context

msg.sender

msg.value

msg.gas

msg.data

msg.sig

Transaction context

tx.gasprice

tx.origin

Block Context

block.blockhash

block.coinbase

block.difficulty

block.gaslimit

block.number

block.timestamp

smerf.net CST4125:L15 Winter 2023 17 / 40

Predefined

Address

address.balance

address.transfer(amount)

address.send(amount)

address.call(payload)

address.callcode(payload)

address.delegatecall()

smerf.net CST4125:L15 Winter 2023 18 / 40

Functions

Function declaration

function functionName ([parameters])

smerf.net CST4125:L15 Winter 2023 19 / 40

Functions

Function delimiters and Scope

function functionName ([parameters])

{
}

smerf.net CST4125:L15 Winter 2023 19 / 40

Functions

Function access modifiers

function functionName ([parameters])

{

[public|private|internal|external]

}

smerf.net CST4125:L15 Winter 2023 19 / 40

Functions

Function return type

function functionName ([parameters])

{

[public|private|internal|external]

[returns (data types)]

}

smerf.net CST4125:L15 Winter 2023 19 / 40

Functions

1 // SPDX -License -Identifier: GPL -3.0

2

3 pragma solidity >=0.7.0 <0.9.0;

4

5 contract ex2{

6 uint public age;

7

8 function setAge(uint x) public {

9 age = x;

10 }

11

12 function getAge () public view returns(uint){

13 return age;

14 }

15 }

smerf.net CST4125:L15 Winter 2023 20 / 40

Function Modifiers

internal

external

default is internal

Internal function can be called from current contract or inherited
contract

External functions are called by an external account or contract

Verify before a call to a function, this makes a call to another
function before execution of the function

smerf.net CST4125:L15 Winter 2023 21 / 40

Function Qualifiers

constant: No ability to modify the state of the blockchain. Only
read state variables.

view: aliases of constant functions

payable: can accept incoming payments

pure: neither reads or writes any variables in storage.

smerf.net CST4125:L15 Winter 2023 22 / 40

Pass by Value

Creates a new memory location

x = y;

new memory location for both x and y

both variables are independent

change one and the other remains independent

isolated values

smerf.net CST4125:L15 Winter 2023 23 / 40

Pass by Reference

Uses the same memory location

x = y;

same memory location for both x and y

x is pointing to same memory location as y

both variables pointing to same memory location

change value in x results in a change in y

change value in y results in a change in x

values are not isolated

smerf.net CST4125:L15 Winter 2023 24 / 40

Variables and storage (adapted from [modi2018])

Storage: global memory and permanent storage. Ethereum stores
these on every node within its network

Memory: local memory and temporary storage. Will maintain that
location for the duration of the function, when function is complete
the storage is no longer available.

Calldata: all incoming function execution data is stored.
Non-modifiable memory location.

Stack: EVM maintains a stack for loading variables and intermediate
values for working with Ethereum instruction set. Stack limit 1024.

Data location

Data storage is dependent on:

Location of variable declaration

Data type

The rules?

smerf.net CST4125:L15 Winter 2023 25 / 40

Storage Rules

Rule 1

Variables declared as state variables are always Storage.

Rule 2

Variables declared as function parameters are always Memory.

smerf.net CST4125:L15 Winter 2023 26 / 40

Storage Rules

Rule 1

Variables declared as state variables are always Storage.

Rule 2

Variables declared as function parameters are always Memory.

smerf.net CST4125:L15 Winter 2023 26 / 40

Storage Rules

Rule 3

Variables declared in functions are by default Memory. With some
caveats:

value type default is Memory.

reference types default is Storage.

reference types can be overridden

value types cannot be overridden

Mappings are by default Storage.

Rule 4

Arguments supplied by callers to function parameters are always stored in
calldata.

smerf.net CST4125:L15 Winter 2023 27 / 40

Storage Rules

Rule 3

Variables declared in functions are by default Memory. With some
caveats:

value type default is Memory.

reference types default is Storage.

reference types can be overridden

value types cannot be overridden

Mappings are by default Storage.

Rule 4

Arguments supplied by callers to function parameters are always stored in
calldata.

smerf.net CST4125:L15 Winter 2023 27 / 40

Storage Rules

Rule 5

Assignments to state variables from another state variable are pass by
value. They are isolated and independent.

1 pragma solidity >=0.7.0 <0.9.0;

2 contract ex3{

3 uint public x;

4 uint public y;

5 function setXY(uint a, uint b) public {

6 x = a;

7 y = b;

8 }

9 function getModY () public returns (uint){

10 x += y;

11 y *= 10;

12 return y;

13 }

14 function getX() public view returns (uint){

15 return x;

16 }

17 function getY() public view returns (uint){

18 return y;

19 }

20 }

smerf.net CST4125:L15 Winter 2023 28 / 40

Rule 5 cont’d
Counter example in Java

1 public class array{

2 public int x[] = new int

[2];

3 public int y[] = new int

[2];

4

5 public void setxy (){

6 x[0] = 10;

7 x[1] = 20;

8 y[0] = 1;

9 y[1] = 2;

10 }

11 public void modxy (){

12 x = y;

13 y[1] = 7;

14 }

15 }

1 public class ex5{

2 public static void main(

String [] args){

3 array c = new array();

4 c.setxy ();

5 c.modxy ();

6 System.out.println("X");

7 System.out.println(c.x[0]);

8 System.out.println(c.x[1]);

9 System.out.println("Y");

10 System.out.println(c.y[0]);

11 System.out.println(c.y[1]);

12 }

13 }

smerf.net CST4125:L15 Winter 2023 29 / 40

Unfair Comparison?

Are the two comparisons the same?

smerf.net CST4125:L15 Winter 2023 30 / 40

Storage Rules
Arrays

Rule 5

Assignments to state variables from another state variable are pass by
value. They are isolated and independent.

1 contract ex5{

2 uint [2] x = [uint (10), 20];

3 uint [2] y = [uint (1), 2];

4 function getX() public view returns(uint){

5 return x[1];

6 }

7 function getY() public view returns(uint){

8 return y[1];

9 }

10 function ModXY () public returns (uint){

11 x = y;

12 y[1] = 7;

13 return x[1];

14 }

smerf.net CST4125:L15 Winter 2023 31 / 40

Storage Rules

Rule 6

Assignments to storage variables from another memory variable always
create a new copy.

1 pragma solidity ^0.8.0;

2 contract ex6{

3 uint public stateUint =10;

4 function getUint () public returns (uint){

5 uint localUint = 20;

6 stateUint = localUint;

7 localUint = 2;

8 return stateUint;

9 }

10 }

smerf.net CST4125:L15 Winter 2023 32 / 40

Rule 6 cont’d
Counter example in Java

1 public class exClass{

2 public int x;

3

4 public void setx(){

5 x = 57;

6 }

7 }

1 public class ex6{

2 public static void main(

String [] args){

3 int localx =100;

4 exClass c = new exClass

();

5 c.setx();//57

6 System.out.println(c.x);

7 System.out.println(

localx);

8 c.x = localx;

9 localx =3;

10 System.out.println(c.x);

11 System.out.println(

localx);

12

13 }

14 }

smerf.net CST4125:L15 Winter 2023 33 / 40

Storage Rules

Rule 7

Assignments to memory variables from another state variable always create
a new copy.
Converse of Rule 6

1 //SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3 contract ex7{

4 uint public stateUint = 20;

5 event display(uint);

6 function create () public returns (uint) {

7 uint localUint = 20;

8 localUint = stateUint;

9 stateUint =45;

10 emit display(localUint);

11 return localUint;

12 }

13 }

smerf.net CST4125:L15 Winter 2023 34 / 40

Storage Rules

Rule 8

Assignments to memory variables from another memory variable do not
create a copy for reference types; however, they do create a new copy for
value types.

1 //SPDX -License -Identifier:MIT

2 pragma solidity ^0.8.0;

3 contract ex8{

4 function test() public pure returns(uint){

5 uint a = 25;

6 uint b = 31;

7 a = b;

8 b = 100;

9 return a;

10 }

11 }

smerf.net CST4125:L15 Winter 2023 35 / 40

Events

track execution of a TX sent to a contract

Dapps can listen to these events

Events combined with data are recorded as special TX logs on the
blockchain

Can be used as receipts or generally used to display data

there is no equivalent of Java’s System.out.println

smerf.net CST4125:L15 Winter 2023 36 / 40

Events

smerf.net CST4125:L15 Winter 2023 37 / 40

Reading

Chapter 3 in [antonopoulos:2018]

Chapter 1 in [modi2018]

smerf.net CST4125:L15 Winter 2023 38 / 40

Summary

Licenses

General Solidity Structure

Functions
Storage Rules
Events
Qualifiers
Modifiers
Declaration and Scope
Parameters

Reference v. Value

Predefined Types

Data Types

smerf.net CST4125:L15 Winter 2023 39 / 40

References I

smerf.net CST4125:L15 Winter 2023 40 / 40

