
Ethereum
Blockchain Development

Week 15

Introduction
The intention of this lab is to look at functions and how variables are stored. All
the exercises are completed in Remix IDE.

Code Completion

Writing code in a new language can be a steep learning curve. The ap-
proach here is to provide some code with underscores () that you are re-
quired to complete. These underscores are there to help you. By completing
these exercises you will be improving your skills and knowledge of Solid-
ity. Coding requires practice, so you will need to practice these and other
exercises outside this lesson as independent study.

Each exercise starts on a new page.

1

remix.ethereum.org

Ethereum: Week 15 1 EXERCISE 1

1 //____-License-_________: GPL2.0
2 pragma ________ ˆ0._.0_
3
4 _________ Test{
5 uint ______ age_
6 ______ public name_
7
8 function setAge(uint x) ______{
9 age = _;

10 }
11 function setName(string x) public {
12 name = x;
13 }
14 function getAge() public ____ returns {
15 return ___;
16 }
17 function get name() public ____ returns {
18 return ____ ;
19 }
20
21 }

Figure 1: Listing for ex1.sol, type this in the Remix environment

1 Exercise 1
This is a simple exercise to test the environment. Create a new environment in the
remix IDE and add a new file, ex1.sol, and type the following code in fig. 1.
Compile and deploy this contract and test if it is running correctly.

Correct the code in Fig.1 and complete the underscore lines. The code should
have:

• two state variables of data type uint & string

• Create two functions that are able to set the values of respective state vari-
able.

• Create two functions that returns the values of the state variables.

2 ©2022-23 smerf.net

Ethereum: Week 15 2 EXERCISE 2

1 //____-License-__________: GPL-3.0
2 pragma solidity _0._.0_
3 ________ ex2{
4 ____ x;
5 ____ y;
6 ________ setXY(uint _, uint _) ______ {
7 x = a;
8 y = b;
9 }

10 ________ modY() public _______ (uint){
11 x += y;
12 y *= 10;
13 return _;
14 }
15 }

Figure 2: Listing for ex2.sol, type this in the Remix environment

2 Exercise 2
Create a new file, ex2.sol, in the existing environment in Remix. Complete
the code in fig. 2 and compile and deploy this contract. Then test and see if this
contract is running correctly.

Add two functions called getX and getY that will be able to return the value
of state variables x and y, respectively. Recompile and re-deploy the contract and
test if it is successful.

Write two functions called setX and setY that are able to change the values
of the state variable.

3 ©2022-23 smerf.net

Ethereum: Week 15 3 EXERCISE 3

1 //SPDX-_______-Identifier: ___
2 ______ solidity ˆ0.8.0;
3 ________ ex3{
4 ____[2] x = [10, 20];
5 ____[2] y = [1, 2];
6 ________ ModXY() ______ _______ (uint){
7 x = y;
8 y[1] = 7;
9 ______ x[1];

10 }
11 }

Figure 3: Listing for ex3.sol, type this in the Remix environment

3 Exercise 3
Create a new file, ex3.sol, in the existing environment in Remix. Complete
the code in fig. 3 and compile and deploy this contract. Then test and see if this
contract is running correctly.

Take care to study this function. It is assigns state variable y to state variable
x. In other languages, this may be done by reference. In Solidity this is done by
value, since they are state variables. To test this the function makes a change to y
and returns x, to see if x remains isolated and independent.

4 ©2022-23 smerf.net

Ethereum: Week 15 4 EXERCISE 4

1 __SPDX-_______-Identifier: ___
2 ______ solidity _______
3 _______ ex4_
4
5 uint ______ stateUint=10;
6
7 ______on getUint__ ______ _______ (uint)_
8 uint localUint = 20;
9 stateUint = localUint;

10 localUint = 2;
11 ______ stateUint;
12 _
13 _

Figure 4: Listing for ex4.sol, type this in the Remix environment

4 Exercise 4
Create a new file, ex4.sol, in the existing environment in Remix. Type in the
code in fig. 4 and compile and deploy this contract. Then test and see if this
contract is running correctly.

4.1 Rule 6 & 7
This is clearly an implementation of Rule 6 in the lecture on storage rules. The
principle here is that when a state variable is assigned a local variable they both
remain indepedent. Rule 7 is the the converse of Rule 6, and a local variable is
assigned a state variable. Write a function that demonstrates this rule, compile,
deploy and test it.

4.2 Events
Write an event that commits the values of the uint parameter to the blockchain.
Name this event display. Emit the value of the local variable in the newly
created function above using the emit instruction.

Compile, deploy and test it and thus demonstrate that the value is written to
the blokchain and that it is independent of the state variable value and memory
location.

5 ©2022-23 smerf.net

Ethereum: Week 15 5 EXERCISE 5

1 __SPDX-_______-Identifier: ___
2 ______ solidity _______
3 _______ ex4_
4
5 uint ______ stateUint=10;
6
7 ______on getUint__ ______ _______ (uint)_
8 uint localUint = 20;
9 stateUint = localUint;

10 localUint = 2;
11 ______ stateUint;
12 _
13 _

Figure 5: Listing for ex5.sol, type this in the Remix environment

5 Exercise 5
Create a new file, ex5.sol, in the existing environment in Remix. Type in the
code in fig. 5 and compile and deploy this contract. Then test and see if this
contract is running correctly.

6 ©2022-23 smerf.net

Ethereum: Week 15 6 EXERCISE 6

6 Exercise 6
Create a new file, ex6.sol, in the existing environment in Remix.

Create a constant unsigned integer state variable, named size, and assign it
the value 5.

Create an unsigned integer array of size, 5 (use variable above), as a state
variable named, sa.

On the same declaration line populate the array with the following values: 10,
20, 30, 40, 50.

Write an event, name display, that will pass an unsigned integer as a pa-
rameter.

Write a function that calculates the sum of all the integers in the array and
emits the sum in the event display.

Then test and see if this contract is running correctly.

7 ©2022-23 smerf.net

Ethereum: Week 15 6 EXERCISE 6

Reading
• Chapter 3 in [?]

• Chapter 1 in [?]

8 ©2022-23 smerf.net

	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Rule 7
	Events

	Exercise 5
	Exercise 6

