
Blockchain
Blockchain Development

Week 1

1 Linux
If using another operating system create a virtual machine with Ubuntu. If you
are already using Linux then you should not need to do anything. Much of what
we do will be based on Ubuntu 18.04 LTS (64 bit).

Next week we will introduce splashtop; this week we are going to look at
the virtual environment for linux. Install Oracle’s Virtual Box (see https:
//www.youtube.com/watch?v=EOibXehwYWE for MS Windows instal-
lation). Then download the virtual machine from smerf.net - this will take 15-
30mins depending on your connection strength and bandwidth - and click on the
CST3550.zip link. Decompress this file and make sure you have 20Gb of hard
drive space.

All development will take place in this environment. Get the 3550 VM work-
ing as a guest in Virtual Box. The password is ’cst4025’.

Open a terminal and as a simple exercise create a directory Blockchainand a
subdirectory 1. Save all your work in this directory.

1

https://www.youtube.com/watch?v=EOibXehwYWE
https://www.youtube.com/watch?v=EOibXehwYWE
https://blockchain.smerf.net/week1.html

Blockchain: Week 1 2 CRYPTOGRAPHIC HASH

2 Cryptographic Hash
MD5 [?] is possibly the most popular hashing algorithm, this does not mean it is
the best. For a review of hashing algorithms see [?, ?]. In this exercise we are
going to use Secure Hash Algorithm (SHA, [?]) with 256-bit mode output.

Create 8 files as shown in Table 1, you can do this manually or write a program.

Filename Content
0.txt 0
1.txt 1
2.txt 2
3.txt 3
4.txt 4
5.txt 5
6.txt 6
7.txt 7

Table 1: Eight Files with a single digit

Let’s complete a hash for the first file, ‘0.txt’, type the following:
shasum -a 256 0.txt

The ‘shasum’ is the command. The ’a’ switch is followed by the value of
256, which is the algorithm selected. Finally, the filename is provided. The output
should be as follows:
5feceb66ffc86f38d952786c6d696c79c2dbc239dd4e91b46729d73a27fb57e9 0.txt

You should have 8 files, find the cryptographic hash for SHA using 256 out-
put? The output to all the files is shown below:
5feceb66ffc86f38d952786c6d696c79c2dbc239dd4e91b46729d73a27fb57e9 0.txt

6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b 1.txt

d4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35 2.txt

4e07408562bedb8b60ce05c1decfe3ad16b72230967de01f640b7e4729b49fce 3.txt

4b227777d4dd1fc61c6f884f48641d02b4d121d3fd328cb08b5531fcacdabf8a 4.txt

ef2d127de37b942baad06145e54b0c619a1f22327b2ebbcfbec78f5564afe39d 5.txt

e7f6c011776e8db7cd330b54174fd76f7d0216b612387a5ffcfb81e6f0919683 6.txt

7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451 7.txt

2 ©2022-23 smerf.net

Blockchain: Week 1 4 CRYPTOGRAPHIC HASH FUNCTIONS

3 Merkle Tree
Merkle Trees are binary hash tree. With files ‘0.txt’ and ‘1.txt’ build a single hash
tree as shown in Fig. 1

• shasum -a 256 *.txt > files.sha

Root

0.txt 1.txt

Figure 1: Simple binary hash tree: Concatenate hashes from ‘0.txt’ and ‘1.txt’:
5feceb66ffc86f38d952786c6d696c79c2dbc239dd4e91b46729d73a27fb57e9
6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b.
Hash this to get the root:
cf1ba4395883ffc50f87999888e810feb5deb92498f3c9cd48a4ef7e063a3b37 2

Calculate the merkle root for all eight files? If you allow for linebreaks be-
tween each hash, the answer for the root should be:
9182e69210a41e2592ae15f11bb237bd45642f173e285e311c4054282b04e0d7

4 Cryptographic Hash Functions
Hashing is an important component to the blockchain, slight variations in the file
cause a huge variation in the resulting hash. Often hashes are represented mathe-
matically, as shown in Eq. 1

Ha(x) = d (1)

where H is the hash function, a is the hashing algorithm used (in our case
SHA256), x is the message and d is the digest. How would it be possible for Eq.
2 to be correct.

Ha(x) = Ha(y) (2)

2This is the result of converting the hexidecimal to a string and inserting new lines between
each hash.

3 ©2022-23 smerf.net

Blockchain: Week 1 4 CRYPTOGRAPHIC HASH FUNCTIONS

4.1 Properties
Important properties of cryptographic hash functions are:

1. Pre-image resistant

2. Second pre-image resistant

3. Collision resistant

Write definitions for each of these properties above?

4.2 Nonces
Nonces play an important part in blockchain consensus algorithms, in particular
the proof of work (PoW) consensus algorithm used in Bitcoin. The nonce is added
to the data and is a way of changing the digest without changing the data. Eq. 3
shows how nonces are used:

Ha(concat(x, n)) = d (3)

where H is the hash function, a is the hashing algorithm used, d is the digest,
x is the original data message, and n is the nonce. The function ’concat(x,n)’,
concatenates the two strings. By changing the value of the nonce the digest can
change, without altering the data.

The next exercise is to test Proof-of-work consensus algorithm. The nonce is 4
characters in length and is added to the original message. The target is a hex value
less than the digest, so Ha(x + n) < Ha(x). Anything less than this is accepted.
Write a program to complete this?

4.3 Create a blockchain
In previous sections you created blocks and their associated hashes. In this section
the aim is to create a blockchain of 3 files: 0.txt, 1.txt and 2.txt. To be
a chain, each subsequent block requires the hash of the previous block. This is
then appended or inserted somewhere in the file. For simplicity, the hash of the
previous blockchain is appended to the end of the file.

• shasum -a 256 0.txt >> 1.txt

• shasum -a 256 1.txt >> 2.txt

4 ©2022-23 smerf.net

Blockchain: Week 1 4 CRYPTOGRAPHIC HASH FUNCTIONS

There is a chain formed. Is this secure on its own. Can we break it for malign
purposes. Change the content of 0.txt from 0 to 900 and answer the following
questions:

1. What do I need to do to make this work and change the genesis block.

2. Why would the solution to the above problem not work on a full blockchain,
what is missing from our primitive blockchain?

4.4 Proof of Work
Let us try proof of work on a simple example. The underlying theory of proof-of-
work, PoW, is that is requires a solution that is difficult or takes some computa-
tional time to complete but once the solution is found can easily be verified with
minimal computation.

To help us with this we are going to download a python program that is going
to run on the linux machine you have just created. But first, some terminology.
The proof-of-work algorithm deployed by most blockchain relies on a ‘nonce’
value. This value is the solution and distributed to all other nodes in the system.
What is the nonce? The nonce is an integer value that is inserted or appended to
the block and increments by 1. This changes the hash of the block. The idea is to
create a hash value that is less than the target value. If the hash results in a larger
value then increment the nonce by 1 and try again. This can be represented in the
pseudo code below:

1. nonce=0

2. target is x

3. while (hash(block & nonce) > x)

4. do

5. increment nonce

6. done

7. distribute the nonce and exit

To experiment with this a simple PoW program has been written in python for
you, follow the instructions below:

5 ©2022-23 smerf.net

Blockchain: Week 1 4 CRYPTOGRAPHIC HASH FUNCTIONS

1. download code: git clone https://www.github.com/iangmitchell/simplePoW

2. enter directory and type: cd simplePoW

3. run program and type: python nonce.py

6 ©2022-23 smerf.net

	Linux
	Cryptographic Hash
	Merkle Tree
	Cryptographic Hash Functions
	Properties
	Nonces
	Create a blockchain
	Proof of Work

